Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 9, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available February 26, 2026
-
Tracking plant cells in three-dimensional (3D) tissue captured through light microscopy presents significant challenge due to the large number of densely packed cells, non-uniform growth patterns, and variations in cell division planes across different cell layers. In addition, images of deeper tissue layers are often noisy, and systemic imaging errors further exacerbate the complexity of the task. In this paper, we propose a novel learning-based method DEGAST3D: Learning Deformable 3D GrAph Similarity to Track Plant Cells in Unregistered Time Lapse Images exploits the tightly packed 3D cell structure of plant cells to create a three-dimensional graph for accurate cell tracking. We also propose a novel algorithm for cell division detection and an effective three-dimensional registration, improving state-of-the-art algorithms. On a public dataset, our novel cell pair matching method outperforms the baseline by 6.83%, 5.96%, 6.40% in precision, recall, and F-1 score, respectively. On the same dataset, our proposed novel cell division technique improves the results of the baseline method by 15.38% and 14.78% in terms of recall and Fl-score, respectively.more » « less
-
Free, publicly-accessible full text available June 10, 2026
-
Analyzing the relationship between productivity and human communication in an organizational settingRuban, Nersisson (Ed.)Though it is often taken as a truism that communication contributes to organizational productivity, there are surprisingly few empirical studies documenting a relationship between observable interaction and productivity. This is because comprehensive, direct observation of communication in organizational settings is notoriously difficult. In this paper, we report a method for extracting network and speech characteristics data from audio recordings of participants talking with each other in real time. We use this method to analyze communication and productivity data from seventy-nine employees working within a software engineering organization who had their speech recorded during working hours for a period of approximately 3 years. From the speech data, we infer when any two individuals are talking to each other and use this information to construct a communication graph for the organization for each week. We use the spectral and temporal characteristics of the produced speech and the structure of the resultant communication graphs to predict the productivity of the group, as measured by the number of lines of code produced. The results indicate that the most important speech and network features for predicting productivity include those that measure the number of unique people interacting within the organization, the frequency of interactions, and the topology of the communication network.more » « less
-
Despite the phenomenal advances in the computational power of electronic systems, human-machine interaction has been largely limited to simple control panels, such as keyboards and mice, which only use physical senses. Consequently, these systems either rely critically on close human guidance or operate almost independently. A richer experience can be achieved if cognitive inputs are used in addition to the physical senses. Towards this end, this paper introduces a simple wearable system that consists of a motion processing unit and brain-machine interface. We show that our system can successfully employ cognitive indicators to predict human activity.more » « less
An official website of the United States government
